NEW JOURNAL OF PHYSICS 2008 JUL 28

Heavy-ion effects: from track structure to DNA and chromosome damage

Ballarini, F, Alloni, D, Facoetti, A, Ottolenghi, A

Univ Pavia, Dept Nucl & Theoret Phys, Via Bassi 6, I-27100 Pavia, Italy.

Abstract: The use of carbon ions for the treatment of certain tumour types, especially radioresistant tumours, is becoming more frequent due to the carbon-ion dose localization and high relative biological effectiveness (RBE) in the Bragg peak region. Human beings can also be exposed to heavy ions in space, since galactic cosmic rays are a mixed field consisting of not only high-energy protons and He ions, but also heavier ions including iron. Due to their high linear energy transfer (LET), heavy ions have peculiar track structures, characterized by a high level of energy deposition clustering. Furthermore, high-energy ions produce energetic secondary electrons ('delta rays') which can give rise to energy depositions several micrometres away from the core of the primary particle track. Also in view of hadron therapy and space radiation applications, it is therefore important to characterize heavy-ion tracks from a physical and biophysical point of view. In this framework, herein we wi! ll discuss the main physical features of heavy-ion track structure, as well as heavy-ion-induced DNA double-strand breaks, which are regarded as one of the most important initial radiobiological lesions and chromosome aberrations, which are correlated both with cell death and with cell conversion to malignancy.

Back